Skip to main content

Big Data Analysis with Scala and Spark


EPFL
Enrollment is Closed

About This Course

Manipulating big data distributed over a cluster using functional concepts is rampant in industry, and is arguably one of the first widespread industrial uses of functional ideas. This is evidenced by the popularity of MapReduce and Hadoop, and most recently Apache Spark, a fast, in-memory distributed collections framework written in Scala. In this course, we'll see how the data parallel paradigm can be extended to the distributed case, using Spark throughout. We'll cover Spark's programming model in detail, being careful to understand how and when it differs from familiar programming models, like shared-memory parallel collections or sequential Scala collections. Through hands-on examples in Spark and Scala, we'll learn when important issues related to distribution like latency and network communication should be considered and how they can be addressed effectively for improved performance.

Learning Outcomes. By the end of this course you will be able to:

  • read data from persistent storage and load it into Apache Spark,
  • manipulate data with Spark and Scala,
  • express algorithms for data analysis in a functional style,
  • recognize how to avoid shuffles and recomputation in Spark,

Recommended background

You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Parallel Programming

Course Staff

Course Staff Image #1

Heather Miller

Heather Miller is a research scientist at EPFL, and the executive director of the Scala Center.

Frequently Asked Questions

What web browser should I use?

The Open edX platform works best with current versions of Chrome, Firefox or Safari, or with Internet Explorer version 9 and above.

See our list of supported browsers for the most up-to-date information.

Question #2

Your answer would be displayed here.

  1. Course Number

    scala-spark-big-data
  2. Classes Start

  3. Classes End

  4. Estimated Effort

    ~6 hours per week